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Crossover scaling in two dimensions
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We determine the scaling functions describing the crossover from Ising-like critical behavior to classical
critical behavior in two-dimensional systems with a variable interaction range. Since this crossover spans
several decades in the reduced temperature as well as in the finite-size crossover variable, it has up to now
largely evaded a satisfactory numerical determination. Using a dedicated Monte Carlo method, we could obtain
accurate results for sufficiently large interaction ranges. Our data cover the full crossover region both above
and below the critical temperature and support the hypothesis that the crossover functions are universal. Also
the so-called effective exponents are discussed and we show that these can vary nonmonotonically in the
crossover region.S1063-651X97)02512-9

PACS numbg(s): 64.60.Fr, 75.40.Cx, 75.10.Hk, 05.70.Fh

[. INTRODUCTION like to classical critical behavior occurs when the raRyef
the spin-spin interactions is increas@ippressing the criti-
The crossover from Ising-like to classical critical behavior cal fluctuationg In two dimensions not only one can access
has attracted renewed attention in recent years. This croskrger interaction ranges, but also both asymptotic regimes
over behavior occurs in many thermodynamic systems, suclire known exactly and the variation of the critical exponents
as ionic solutions, simple fluids, fluid mixtures, and polymeris considerably larger than in the crossover from 3D Ising-
mixtures. The Ginzburg criteriofil] states that sufficiently like critical behavior to classical critical behavior. Mon and
close to the critical point these systems exhibit critical expoBinder derived the(singulay R dependence of the critical
nents belonging to the three-dimensiof@D) Ising univer-  amplitudes of scaling functions and carried out Monte Carlo
sality class. At larger distances from the critical point, butsimulations to verify these predictions numerically. Even in
still within the critical region, classicalmean-field-lik¢  these two-dimensional systems, the mean-field regime turned
critical exponents are observed. Although this appears to beut to be only barely reachable.
a well-established picture, the precise nature of the crossover In a recent papef10] we rederived the predictions of
between these two universality classes is still subject to inMon and Binder from renormalization theory and also ob-
vestigation. For example, Anisimost al. recently claimed tained theR dependence of various corrections to scaling,
[2] to have observed an “effective” susceptibility exponent such as the shift of the critical temperature with respect to
that variednonmonotonicallyfrom its classical valueyys  the mean-field critical temperature. Furthermore, larger inter-
=1 to its Ising valuey,~1.24 when the critical point was action ranges and system sizes were accessible to our nu-
approached. Later, the possibility of such behavior within themerical simulations thanks to a dedicated Monte Carlo algo-
critical domain was questioned by Bagnuls and Bervillier;rithm. This enabled us to actually verify the theoretical
see Refs[3,4]. On the other hand, Fisher has arg{igfithat  predictions in two-dimensional systems. In this paper we
nonmonotonic variation of effective critical exponents is notshow that the simulations presented in R&D] allow a full
necessarily an indication of nonuniversal behavior. Othemapping of the finite-size crossover curves for various quan-
guestions concern the size of the crossover region, which itties. However, these curves describe fimite-sizedepen-
expected to span several decades in the crossover variatdences of critical amplitudes, whi¢to our knowledgghave
[6], and the size of the temperature region arolipdwithin  not been observed experimentally. Therefore, we have also
which Ising-like behavior is observgdd]. Until now it has  carried out simulations at temperatures farther from the criti-
turned out to be very difficult to accurately observe the fullcal temperature in order to observe thermalcrossover of
crossover region in numerical simulations. A major effortthese quantities. The results of these simulations, which par-
has been undertaken in R¢8] for three-dimensional poly- tially have been reported in an earlier pap&t], are pre-
mer mixtures, where crossover occurs as a function of theented as well. The fact that in our model both the tempera-
polymer chain length. However, despite chain lengths of upgure distance from the critical point and the interaction range
to 512 monomers, the results did not span the full crossoveran be varied turns out to be essential to observe the full
region. For this reason, Mon and Bindg3] turned their  crossover region.
attention to the two-dimensional Ising model with an ex- The outline of the remainder this paper is as follows. Af-
tended range of interaction, where a crossover from Isingter a short recapitulation of the model under investigation
(Sec. I) we start in Sec. Ill with finite-size crossover scaling.
We discuss the required system sizes and interaction ranges
*Electronic address: erik@tntnhb3.tn.tudelft.nl and obtain the crossover curves for the absolute magnetiza-
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56 CROSSOVER SCALING IN TWO DIMENSIONS 6541

tion density, magnetic susceptibility, the spin-spin correla-Hamiltonian in momentum space, this implies that the coef-
tion function over half the system size, and the fourth-ordefficient of the ¢* term must be much smaller than that of the
amplitude ratio. Thermal crossover scaling is treated in Secp? term, uL*9/R*<1 [cf. in particular Eq.(6) of Ref.

IV, where we consider the approach Bf both in the sym- [10]], which again leads to the crossover parameter
metric phase T>T,) and in the state of broken symmetry LR™#(“~9 where for the moment we assume thats of
(T<T.). Again, crossover curves are obtained for the ordeiorder unity.

parameter and the susceptibility. The various aspects of these In Ref.[10] we focused our attention on the critical finite-
curves are discussed in some detail. Graphs of the logarittsize amplitudes in the limit of — . Here we will examine
mic derivatives of the crossover curves, which can be assahe crossover in the corresponding data fmite system
ciated with so-called effective critical exponents as measuredizes. Since the crossover regime is expe¢tefl] to span

in experiments, are presented in Sec. V. In Sec. VI we endeveral decades in the crossover varidbleL/R?, it is nu-

with a summary of our conclusions. merically not feasible to observe both asymptotic regimes by
merely varying the system sizewhile keeping the rangR
Il. SHORT DESCRIPTION OF THE MODEL fixed. Therefore, we construct the curve by combining the

! . . ) . results for various values &; cf. Ref.[8]. Indeed, the Ising
Let us first briefly recall the model as it was introduced 'nregime L/R?>1) is easily reachable, although the results
Ref. [9]. This is a two-dimensional Ising system consisting ¢, very small ranges do not conform well to the leadRg

of .L>.< L lattice site; with periodic bour)da_ry C_O”ditions',EaChdependence of the critical scaling functidi®$ and are thus,
spin in the system interacts equally with@sieighbors lying 4t first sight, not well suited for constructing the crossover
within a distanceR,. This defines the coupling between two ;e The mean-field regime_(R?<1), however, poses

spinss; ands; at a distance as more substantial problems. If the linear system dizés
cR-Y if r=R rr_1ade too small, the numerical results exhibit strong finite-
Kij=K(r)= mo m (1)  size effects. Therefore, must_be at least of the order of the
0 if r>Rpy. interaction range. More precisely, boundary effects will oc-

- ..._cur for systems for whiclhh ~R,,, and the smallest possible
!n the absence of an external magnetic field the Ham|lton|ar\1/a|ue of the crossover variabl& is roughly equal to
IS Rn/R?~+/2/R. Thus large ranges are required to reach the
regime whereG<1. In a conventional Monte Carlo algo-
HikgT=—2, > K(ri—rj]ss; , (2)  rithm, the efficiency of simulations rapidly decreases with
b increasing interaction range. This limitation has been cir-
cumvented by applying a dedicated cluster algorithm, as ex-
plained in Ref[10]. Still, a problem remains. Namely, the
finite-size crossover scaling is valat the critical tempera-
ture. Any deviation from this temperature will lead to sys-
tematic errors in the analysis. Since tfrange-dependent
2_ (ri_rj)zKij 1 critical temperatures are determined in the Ising limit, i.e.,
RZEm—z_z Iri=rj|2  with |[r,—rj|<Rq. from system sizet >R?, large interaction ranges require
Z K. Zj#i very large system sizes for an accurate determinationof
T For example, the most efficient way to obtain data @r
(3 ~0.02 is to simulate a system with=100 andR,,=100
(R~70). However, an accurate determination ©f(R
For large rangesR approaches the limiting valugy, /2. =70) requires system sizes of at least 5000, whereas we
have carried out simulations for system sizes up to 1000
ll. FINITE-SIZE CROSSOVER SCALING X 1000 lattice sites. This has been solved as follows. The
renormalization treatment in Reff10] predicts the form of
the function describing how.(R) deviates from the mean-

It has been shown by Binder and Deut$tB] that cross-  field critical temperature wheR varies. By fitting this func-
over scaling can be combined with finite-size scaling by in-tion to the accurately determined critical temperatures in our
cluding the dependence on the crossover variable in thgrevious study an expression is obtained T(R) from
probability distribution function of the order parameter. In- which the critical temperatures for very large ranges can be
deed, just as crossover in the thermodynamic limit is decalculated to a relatively high accuracy. The shiftTof is
scribed as a function of the reduced temperature divided bgxpressed by
the Ginzburg number, it can be described as the function of a vE a1 5 3
size-dependent crossover varialfie in finite systems. In Te=T¢ +E[1+azlnR 1+ R’ (4)
Ref. [9] this crossover variable was derived &3
=LR ¥4~9 whereL is the linear system size arti de- whereTE"le and the last term is a higher-order correction
notes the dimensionality. This also follows from the renor-omitted in Ref.[10]. A least-squares fit for ®6R*<70
malization treatment in Ref10]. In short, sufficiently close (32<R2=<140 in Ref.[10]) yielded a;=—0.2676), a,
to the Gaussian fixed poirtt.e., for a sufficiently large in- =1.143), andaz;=—0.273). Figure 1 shows the critical
teraction rangeR) the critical behavior will be classical. In temperatures and expressi@h with the appropriate coeffi-
terms of a renormalized Landau-Ginzburg-Wils@riGW) cients.

where the sums run over all spins in the system gnde-
notes the position of spig;. To suppress lattice effects we
use aneffectiveinteraction rangeR, defined as

A. General considerations
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In the Ising regime, the absolute magnetization density do=boR 1+§(b1+b2InR ) (6)

scales(at criticality) asymptotically as(|m|)=L"&dy(R),
where the critical amplituded, is a function of R, dg
xR %4 In the mean-field regimgm|) does not depend on
R, but is simply proportional ta.~ 2 When plotting(|m|)
as a function oflG=L/R? a data collapse is obtained if it is
multiplied by a facto.*XR™(?*~1). This resulting quantity is
proportional toG*~ 8 in the Ising regime and t&*~ 2 in

This “finite-range correction” is very similar to the shift of
the critical temperature in E@4), but originates from a dif-
ferent term in the renormalized LGW Hamiltonian. To illus-
trate this correction graphically, we have reproduced Fig. 6
from Ref.[10] and included the result of a least-squares fit of
. , ; - Eq. (6) to the data; see Fig. 3. The curve clearly yields an
the mean-field regime. A suitable choicexis 1/2 because  gycelient description of the critical amplitudes, even for
this yields a quantity that is still independent Bfin the g ranges. We have used this fit to construct a clear cross-
mean-field regime. Indeed, it is shown in the Appendix thatyyer curve for the magnetization density on which the data
in & two-dimensional system in which all spin-spin interac-¢,r 5| yvalues ofR collapse. To this end, all data are divided
tions are equally strong by the correction factor in square brackets in E8). The

1 result is shown in Fig. @). One observes that in the Ising
<|m|>:121/41“(§) i+ i (5) regime all data perfectly collapse on a common asymptote
r'(hH L L 32 with slope 3/8. ForG small, the data indeed approach the

mean-field predictioifs). The fact that aG~0.2 the data for

R2=5000 andR2=10000 coincide with those foRZ

—090989058 ... in thelimit of G—0. We remark that =72,100,140 confirms that t_he critical temperatures for the

our requirement.>+2R unambiguously relates the limit large ranges havg be_en estimated accurately. The center of
the crossover region lies betwe& 0.1 andG=1.0, which

G—0 to the mean-fieldR— ) limit. In Fig. 2(a) we have g : .
plotted the absolute magnetization density multiplied by theShOWS that the parametaris indeed of order unity. Finally,

square root of the system size versus the crossover variabI't 's particularly encouraging that no remaining finite-size
N . y 2 5 . Stfects, causing deviations from the curve, are visible in Fig.
Interaction ranges fronR;,=2 to R;,=10000 were in-

o 2 2(b), despite the fact that the correction factor was calculated
cluded, where the data fét,=5000 andRy,=10 000(span- i, the | limit and hence does not compensate for such
ning the range 0.02G=<0.2) have been obtained at tem-

higher-order finite-size effects.
peratures calculated from Eq.4): K.(R,=5000)
=6.3746(3x10°% and K (R,=+/10 000)=3.184 91(9)
X 107°. The crossover curve evidently spans approximately
three decades i%s. In the limit of G—O0 it gradually ap- The procedure described above for the absolute magneti-
proaches a horizontal line. F@&>1 the picture is not very Zzation density can be applied to the magnetic susceptibility
clear. The data points for each single valueRolie on a X, which we have calculated from the average square mag-
straight line with slope 3/8, corresponding to the Ising as-netization;y=L%m?). At T=T,, the susceptibility is in the
ymptote, but the asymptotes only coincide for large rangessing regime proportional to "“R~%2? and in the mean-field
(cf. Fig. 4 in Ref.[9]). The reason for this is that, as men- regime it scales proportionally to. To obtain a data collapse
tioned above, for small ranges the critical amplitudes do nofor x as a function ofG, one has to multiply the finite-size
conform to the leadingR~ % dependence. This can be cured data byL*R™(?**2), where a suitable choice is given by
by invoking the renormalization treatment of Rgf0]. In-  =-1. In the mean-field limit, x/L approaches
deed, the theory predicts the structure of the corrections tq12I'(3/4)/I'(1/4)=1.170828 6 ... (see the Appendix
the leadingR dependence of the critical amplitude, As shown in Ref[10], the deviation from the leading range

and (|m|)yL will thus approach 12T (1/2)/T'(1/4)

C. Magnetic susceptibility
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dependence of the critical amplitude is very similar to that ofmapped and shows a close resemblance to that for the sus-
the absolute magnetization density, ceptibility, including the approach of the asymptotic mean-
field value. In the range 02L/R?<1.0, the data do not
precisely coincide on a smooth curve. This is due to nonlin-
@) ear finite-size effects, which are, for the spin-spi lati
, , pin-spin correlation
function, apparently larger than for the absolute magnetiza-
where now one additional higher-order correction is re-tion density or the magnetic susceptibility. We will pay more
quired. Therefore, we only show the resulting crossovea@ttention to these deviations when discussing the universal
curve for the susceptibility after the data have been divide@mplitude ratio(see below. It should be noted that the criti-
by the correction factor in square brackets; see Fig. 4. Agairgal amplitudes listed in Table V of Ref10] have to be
both the mean-field asymptotic result and the Ising asympmultiplied by a factor 2=0.840896 2 ... in order to
tote (slope 3/4) are clearly reproduced, with a perfect col-obtain the correct values.
lapse for all ranges.

_ 1 as
Po=0oR ¥4 1+ Q(qﬁqZInRZHQ ,

E. Universal amplitude ratio

D. Spin-spin correlation function The amplitude ratidQ, =(m?)%/(m{) is a size-dependent

Closely related to the magnetic susceptibility is the spin-quantity, which takes a universal val@in the L —cc limit.
spin correlation functiorg(|r|). In our simulations we have That is, it is calculated by taking the ratio of the square of the
sampledy(L/2), which scales both in the Ising regime and in magnetization density and the fourth power of it in a finite
the mean-field regime ag/L2. Thus we obtain a data col- geometry and subsequently taking the lirhit-o. For T
lapse by multiplying the finite-size data hy'R™(**~2) in  >T., Q approaches the Gaussian valQe=1/3 and forT
which we have sek=1. After correcting for the higher- <T. it approaches the maximum val@@=1. At criticality,
order range-dependent corrections in the critical amplitud¢he amplitude ratio is known exactly in the mean-field case,
[which have the same structure as those in(Bg.we obtain  Qur=0.456 946 B ... [13,14 and to a high accuracy in

the graph shown in Fig. 5. The full crossover curve can beahe two-dimensional Ising mode,~0.856 216(1)15]. In

2 +
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8 @ o
10 = f‘_@
;g ° FIG. 5. Finite-size crossover curve for the
) * spin-spin correlation function multiplied by the
= 50 a . .
Q ol 72 R ) system size. A range-dependent correction factor
i 100 v (abbreviated aC[g]) has been divided out, as
140 v r discussed in the text. Both the mean-field limit
5000 o ',v/’ and the Ising asymptotslope 3/4) are confirmed
10000 - M' vl by the data.
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Ref. [10], Q. (K.) was plotted for a large interaction range ing in on the deviations; see Fig. 7. The data pointsRﬁ,r
(R2m=140) as a function of the system size. The approach 05000 andR2m=1O 000 may serve as a reference for the
the Ising value was clearly visible fdr large, but for small location of the “true” crossover curve. One observes that for
system size® first decreased towar@y and then started each of the rangeR2,=72, 100, and 140 the deviations from
to show strong nonlinear finite-size effects. Evidently, it is athis curve increase witldecreasingsystem size, which in-
better approach to construct the true crossover curve fadeed shows that the effects are caused by finite-size correc-
Q(K.) by plotting finite-size data fof) for various ranges tions. If the deviations had been caused by, e.g., an inaccu-
versus the crossover variable. This is shown in Fi@.6 rate determination of the critical temperature, the effects
Several remarks apply to this graph. First, one notes thawould have increased with increasing system size. Unfortu-
L/R? is indeed the appropriate crossover variable: A reasonpately, it is not easy to separate these corrections from the
able collapse is obtained for all valueslobndR. However, leading crossover behavidexcept graphically unless the
some remarkable deviations from this scaling behavior aréull crossover function is knowiwhich in turn would limit
present, which are most clearly visible in the range 0.Zhe use of a numerical determinatjoi®f course this prob-
<L/R?<0.6, but also present arouhdR?>=10. Similar ef- lem can be circumvented by determining the crossover at
fects were already observed in the spin-spin correlation functhese values foG from systems with a larger system size
tion, but now the effects are much more pronounced becausand a larger interaction range. The deviations aroufe?

we have employed for the amplitude ratio a linear instead of= 10 are caused by the same effect, but now for systems with
a logarithmic vertical scale. These deviations are due to norsmall R. Although the amplitude ratio is more sensitive
linear finite-size corrections, as can be seen clearly by zoomeven if one takes into account the difference in scébe
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these finite-size effects thgm?) = /L2 and(m?) individu-  in thermodynamic systems. For this reason it is important to

ally (the curve for the latter is not shown here, but itsstudy its temperature-dependent counterpart as well. This so-
smoothness is comparable to that of the susceptipilyis  calledthermalcrossover, which was from a phenomenologi-
less sensitive to corrections to the leading range dependenazl scaling point of view already considered in Rgf6], is
Indeed, for(m*) these corrections are again of the fofin ~ of course closely related to finite-size crossover: In finite
+R™?(s;+5,InRY)+R*s;] andQ must thus be divided by systems crossover to mean-field-like behavior occurs when

the system sizédas been decreased to the appropriate power
® of the interaction ranggi.e., L~R¥(“~9 or L~R? for d

=2), whereas in the temperature-dependent case this cross-

over occurs when the temperature distance to the critical
The coefficients;, s,, ands; have been determined from a point is such theorrelation lengthhas become of the order
least-squares fit to the critical amplitudes(of*) andqy, g5, of an appropriate power of the interaction range. In the latter
and gq; come from Eq.(7). Figure 8 shows the correction case, the precise crossover location is determined by the
factors for(m?), (m*), andQ. Evidently, the latter factof8) ~ Ginzburg criteriont~ 92Rdu~1~1, whereu is the coeffi-
is much closer to unity than the former two. Figuré)s cient of the¢® term in the LGW Hamiltonian. It should be
showsQ, (K,.) divided by the correction factof8), which  kept in mind that these considerations are valid omithin
indeed shows only slightly less scatter than the graph withoute critical region i.e., care must be exercised to keep the
this correction factor. In particular, the deviations for thereduced temperaturet=[T—T.(R)]/T.(R) sufficiently

[1+R™2(qy +g,InR?) +R™*q3]?
1+R ?(s;+5,InR?) + R “s,

larger ranges do not disappear. small. When studying thermal crossover in practical simula-
tions one has the additional complication that sufficiently
IV. THERMAL CROSSOVER SCALING close toT, the correlation length will always be bounded by

the finite system size, which is precisely the situation one

wants to avoid. So relatively large system sizes are required.
The finite-size crossover scaling studied in the preceding As follows from the Ginzburg criterion, the appropriate

section is an intrinsic finite-size effect that is not observablescaling variable in two dimensions iR? and one can there-

A. General considerations

1.1 r
o
‘§ FIG. 8. Range-dependent correction factors
09t C[m?]=C[x], C[m*], andC[Q] in (m?), (m*),
2 and Q, respectively, as determined by least-
§ squares fits to the critical amplitudes extracted
8 08 8 from the Monte Carlo data. The line at height 1 is
o drawn for reference. One observes t6a0 ] lies
07 very close to, although not exactly at, unity.
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TABLE I. Some properties of the additional ranges used to span the full thermal crossover Région.
=5000 has been included for completeness; it has only been used for the finite-size crossover scaling. The
first three columns list the squared range of interadﬁﬁm the corresponding number of neighbarand the
squared effective range of interactiBA, respectively. In addition, the critical couplifg, as calculated from
Eqg. (4) and the mean-field approximation for the critical coupllﬁﬁF= 1/z are shown.

R2 z R Ke KMF
500 1580 93339 251.770 6.379(2)x 10°4 6.329113% 10~ *
1000 3148 39530 501.309 3.1904(6)x 104 3.176620% 104
4000 12580 1252580 2002.49 7.9594(5)x 10 ° 7.9491256( 10 °
5000 15704 P ~2499.68 6.3746(3)< 10 ° 6.3678044 10 °
10000 31416 S~ 5000.34 3.18491(9) 10°° 3.183091& 10 °

fore study thermal crossover effects by varying the interacand the interaction range, as can be read off from the univer-
tion range as well. This is essential because of the followingsal scaling functions derived in Refl0]. Indeed, the
For small values oR, t has to be made rather large to crosstemperature-dependent argument of these functions is
over to classical critical behavior and it is possible that ong| YR=2(=d/(4=d) (y. =1 in the 2D Ising universality
leaves the critical region before reaching the classical regjasg and the width of the finite-size regime is thus propor-
gime. On the other hand, if one only studies systems Withjgnal to L ~tR2(—d/(4—d)— | ~1 Note that the absence of
large interaction ranges,has to be made very small to ob- 5y range dependencerist a general feature and even for

serve lIsing-like critical behavior. However, for §uch smaI_I the two-dimensional Ising model only true to leading order
values oft extremely large system sizes are required to avchf_ Fig. 5 of Ref[10]). Higher-order terms will entail range-

finite-size effects. Therefore, we have constructed, just as IBependent factors that involvéor d=2) logarithms ofR.

Sec. lll, crossover curves from results for various ranges. Wey ijge the finite-size regime, the data for each individual
hav_e carried out simulations for the interaction ranges StUdr'ange first lie approximately on the Ising asymptote, which
ied in Ref.[10] at temperatures further beloW, and also  a'heen drawn with an amplitude such that it coincides with
generated data for the interaction rang@§=500, 1000, e data folR2,=2. For the smaller ranges the amplitudes of
4000, and 10 000. Table | summarizes some properties Ghe asymptotes show a considerable range dependence,
these systems. Simulations have been carried out down {Qnereas for larger ranges the amplitudes converge. Upon
temperatures as low a~0.5T;. For the order parameter g ther decrease of the temperattirecrease of the absolute

crossover can only be studied in the phase of broken symygiye oft) several types of behavior occur: For the smallest
metry, but for the susceptibility we have also considered th?ange R2=2) the data points still lie on the Ising asymp-
m

symmetric T>T,.) phase. Since in this phase no saturatlontote_ ForR§1=4 andRﬁle the data leave the Ising asymp-

,?hﬁ;e?ﬁ ?;g:;’oyeurcpe;gﬁnzrslCszrsvﬁﬁ'c;?]gwgglsowmce to Spaﬂ)te_at sgfficieptly low temperaf[ures and then follqw a nearly
' ' straight line with a slope that lies between the Ising and the

mean-field asymptote. In these cases one has left the critical
region without ever reaching the asymptotic mean-field re-

As derived in Refs[9,10], the absolute magnetization gime. For each range the data for all system sizes coincide,
density scales, sufficiently close to the critical point, asas they should outside the finite-size regime. Rje=72 and
(Im[yoc(—t)PRZIE-D/(4=d) (1<0), which for the two- RZ=140 the mean-field asymptote is approached much more
dimensional case yield§m|)o(—t)Y®R% In the mean- closely. However, if the temperature is decreased further be-
field regime, on the other hand, the magnetization density ifow the critical temperature the data points start to deviate
simply proportional to ¢ t)2. When plotted as a function of from the asymptote again. This effect is caused by saturation
tR?, a data collapse for all ranges is now obtained if theof the magnetization and can be quantitatively described
magnetization density is multiplied Hy. Figure 9a) shows  with mean-field theory, as we will show below. Turning to
the corresponding plot. We will discuss the various aspectsven larger ranges, we see that the data now really reach the
of this graph in more detail. The overall picture suggests thaasymptote with slope 1/2 and follow it for up to one decade
the data roughly follow the Ising asymptofslope 1/8) for in the crossover variabldor the largest range we have stud-
small values ottR? and then gradually approach the mean-ied) before saturation sets in. Also the exact amplituse
field asymptote(slope 1/2) for large values diR?. Here (see below of the asymptote is precisely reproduced, which
“small” and “large” refer to the absolute value aiR?> and  shows again that the critical temperatures of the systems with
“slope” is generally used for the logarithmic derivative large interaction ranges have been accurately determined: A
din{|m|)/dinlt|. For very small values ofR? the data start to deviation would have shifted the graph along the horizontal
deviate from the Ising asymptote at hrdependent location axis.
and approximately follow(for temperatures closer ®.) a We will now first consider the offset of the asymptotes in
horizontal line. Here one has entered the finite-size regimehe Ising regime. Although this effect occurs outside the
where the correlation length is limited by the system sizefinite-size regime, we may well hope that the so-called finite-
This is the case that was studied in Sec. Ill. The width of thisrange corrections applied in Sec. [Eq. (6)] can be used
regime dependgfor generald) on both the system size here as well. Indeed, these corrections are part of the univer-

B. Absolute magnetization density
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FIG. 9. Thermal crossover for the absolute
magnetization density for various ranges and sys-
tem sizes, where the reduced temperatuisede-
fined as| T—T,(R)]/T.(R). In (8) no additional
correction terms have been used, whereagjn
the factorC[m] has been divided out. Ift) the
data for R2=72 have also been corrected for
saturation effects and data points in the finite-size
regime have been omitted. For an extensive dis-
cussion of the various features of these graphs the
reader is referred to the text.
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sal scaling functions and although the amplitudg makes it very tempting to apply a similar correction here. On
=limg_.lim__.R¥LY&|m (K.)|) is a specific limiting the other hand, these corrections were calculated itsihg
value, the range-dependent correction factor does not depeimegime, which we here are gradually leaving. In Fi@h)9ve
on this limit. Especially the collapse obtained in Figh2 show the same data, but now divided by the correction fac-
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tor. Although a perfect collapse is not obtained, the asympFigure 9b) shows for the five largest ranges
totes lie together much more closly than without this correc(Rﬁlz 140,500,1000,4000,10 000) the curves
tion.
Also the critical amplitude of the Ising asymptote is (Im|)R= J3(—tR?)12
known exactly. Indeed, by expanding Onsager’'s expression

for the spontaneous magnetizatidv,1 2
p g m a < 1——(—tR2)— (_tRZ)Z
1 18 5R? 175R*
m={1-— 9
Sintf(23/kgT) ® (13

around the critical poind/ksT.= sarcsin{1), weobtain for O Rp,=140 this expression does not precisely coincide
t<0 with the numerical data, but for the remaining values the
curves accurately describe the saturation effects. For these
m=[4+2arcsinlil)(—t)+O(t?)]¥8~1.222 409 96—t)1/8,  cases the interaction ranges are apparently large enough to
(10) suppress the critical fluctuations to a large extent. The lowest
temperatures shown in the figure ar€r .=0.52, 0.60, 0.60,
For the nearest-neighbor Ising mod®+R,,=1, so the fact 0.68, and 0.50 foan:140, 500, 1000, 4000, and 10 000,
that in Fig. 9 along the horizontal axi®? is used instead of respectively. Saturation effects become visible in Fig. 9 for
t and along the vertical axi$m|)R instead of |m|) does not  t<—0.15, i.e.T/T,=0.85. According to Eq(12), the mag-
affect the amplitude of the asymptote. However, the correcnetization deviates here approximately 5% from the asymp-
tion factor C[m] [denoting the factor in square brackets in tote. Using Eq.(12), we can perform another operation on
Eq. (6)] must of course be taken into account. This correcthe numerical data. Namely, the influence of saturation ef-
tion factor describes the deviation of the critical amplitudefects in the mean-field model is described by the ratio of the
do(R) from the leading scaling behavior in terms of a powerfull series expansion on the right-hand side of E) to its
series inR™2 (with coefficients that depend onfand itis  first term. As the mean-field expression constitutes an accu-
not a priori clear whetherlC[m] converges foR=1. Itis  rate description of the saturation effects f8f,=500, the
certainly unlikely that a single teriithe term proportional to  factor in square brackets in E¢L3) will give an accurate
b, in Eq. (6) vanisheg describes the deviation very well. No description of theelative saturation effectsi.e., the ratio of
exact result fordg(R=1)=lim __..m (K;)L"®is known to  the saturated magnetization and the crossover ieen to
us, but from a modest Monte Carlo simulation we foundprobably even lower interaction ranges. To illustrate this we
do(R=1)=1.00924). On theother hand, from Eq6) with  have divided the data fdR%=72 by the corresponding fac-
bo=1.466(2) and b;=-0.305(1) we find do(R=1) tor. The resulting grapfFig. Ac)], in which also the data
=1.0184), which differs approximately two standard devia- points in the finite-size regime have been omitted, shows that
tions from the numerical result. Recall thag andb, were  the data for these large ranges now nicely coincide on one
obtained from a least-squares fit to the critical finite-size amcurve, which is the actual crossover curve for the order pa-
plitudes for 2<R%<140. Nevertheless, the relative differ- rameter.
ence lies below the 1% level, which cannot be distinguished The fact that for different interaction ranges the data
in our graph. Therefore, we have drawn the Ising asymptotéwhich overlap for considerable intervalstéi?) coincide on
with amplitude[4+/2arcsinh(1)¥8/(1—b,) in Fig. Ab) and  one curve lends strong support to the hypothesis that the
it indeed turns out to be a precise tangent to the crossovarossover curve is universal. Indeed, nonuniversal effects
curve. may occur once one has left the critical region. Then micro-
As mentioned above, also the saturation effects can bscopic cutoff effects are no longer negligibly small compared
described with mean-field theory. Namely, the magnetizationo thefinite correlation lengthé, which implies that the form

follows from the well-known expressidi 9,20 of the crossover curve depends on the ratio betweamd
the lattice spacin@. In our simulations we have not mea-
m=tan)‘(£m> (11) sured the_ correlation length directly, but we can st_iII make a
T ) rough estimate from the data. Namely, at the locations mark-

N _ _ ing the boundaries of the finite-size regime for different in-
Rewriting this asm=(1+t)arctanh(n) and solving form,  teraction ranges and system sizes in Fig. 9, the correlation

one obtains belowr, for smallt length is approximately equal to the system size. From the
magnetization densities foR2=72 we conclude tha#
m=/3(—t)¥2— E\/§(—t)3’2— E\/ﬁ(_t)wz ~0.5/(—t), independent of the interaction range. The latter
S 175 conclusion is in agreement with the above-mentioned renor-
166 malization prediction that the width of the finite-size regime
— —3(— )"+ ——[3(-1)¥2+ O((— 1)), is to leading order independent of the interaction range.
125 67375 Thus, at a fixed value of the crossover variatig the cor-

(12)  relation lengths for different ranges hadéferent values.
However, the crossover curves coincide at fix&f and
The leading term shows the classical vagie 1/2 and the hence are independent of the rafi@.
critical amplitude 3. To describe the saturation effects Finally, we make some observations concerning the size
in Fig. 9, the first three terms of this series suffice.of the crossover region. It is clear that it takes between two
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and three decades in the crossover variable to cross ov@fedium-range results fa Ty than from the corresponding

from Ising-like to classical critical behavior. Thus, unless g g fory. This may partially explain the difficulties ex-
one studies systems with a rather large interaction range, onge_ . : " .

) perienced in Ref[9]. The deviations have been fitted to a
has to go to such a large temperature distance fignto

sufficiently decrease the correlation length compared to thgorrectlon factor olthe form1+R™*(vy+v,INRY)], which

interaction range that one has already left the critical regiove abbreviate a€[ x]. Indeed, the fact that the finite-range
before observing classical critical behavior. The center of theorrections fory are so small allowed us to neglect them
crossover region lies in the neighborhood|tR?|=1, con-  altogether in Ref[11], where only logarithmic scales have

sistent with a value fou of order unity. been employed.
In Fig. 11(a) we show the connected susceptibility, appro-
C. Magnetic susceptibility priately scaled withR and divided by the correction factor

Unlike the order parameter, the magnetic susceptibilityC[ x]. as a function of the crossover variable. Just as for the
displays crossover upon approaching the critical point eithemagnetization density, deviations from the crossover curve
from below or from above. We will discuss these two situa-are present even after the finite-range corrections have been
tions separately. In the ordered pha$esT., we approxi- applied. These effects are either caused by finite-size effects
mate the magnetic susceptibility by the so-called connecteftlose toT.) or by systems that leave the critical region. In
susceptibility the latter case, saturation effects start to come into play. The

) ) finite-size effects are clearly recognizable in the rightmost
~_ Ld<m )—(Iml) part of the graph, where the curves start to follow horizontal
X kgT ' lines. Once the temperature has been sufficiently decreased,
the graphs start following an asymptote with slop&/4, on
In the two-dimensional Ising model with interaction rarige  which the data for various ranges quite accurately collapse.
this quantity will, close to the critical point, diverge as The amplitude of this asymptote is simply related to the ex-
(—t)~"R™32, Further belowT, it will cross over to classi- actly known amplitudeA~=0.02553 ... [21,29 of the
cal critical behavior, Whergoc(_t)*l_ In a graph showing reducedsusceptibility yo. This reduced susceptibility is de-
results for various ranges as a function of the crossover varfined asyo=kgTx/u? whereu denotes the magnetic mo-

abletR? a data collapse is obtained fgf R?. However, just ment of a spin. This magnetic moment has been divided out
as for previous crossover curves, the data for srRaill implicitly in our calculations as well. However, we should
display an offset because of corrections to the leading?  keep in mind that we have expressed all temperatures in
dependence. To determine these deviations we first study tigrms of the mean-field critical temperature, i.€l,
critical amplitude of the connected susceptibility, which was=1/zK;, where z is the coordination number. For the
not considered in Ref.10]; see Fig. 10. The statistical un- nearest-neighbor model this yields an additional factor 4 and

certainty of this amplitude is notably larger than fgm|) ~ we thus expect a critical amplitude 2arcsinh1) In addi-
and<m2> (cf., e.g., Fig. 3, but one can still observe that the tion, we have to take into account the finite-range correction

asymptotic regime is reached. In this figure we have alséactor that has been divided out. The question whether this
plotted the critical amplitude of the so-called scaled suscepfactor is applicable foR=1 has already been discussed in
tibility keTx, which was studied in, e.g., Ré8]. Evidently, Sec. IV B[below Eq.(10)]. Here the difference between the

the latter amplitude shows a much stronger deviation fronfl€Viation from the leading scaling behavior as predicted by

the leading range dependence, due to the fact thaffa{$®) ~ C[ x] and the numerical result is approximately 3%, whereas
deviates fromT™" (Fig. 1). Thus, although both amplitudes the smallest differences that can be discerned on the logarith-

have the same asymptotic behavior for large interactionic scale of Fig. 1a) are of the order of 5%. The asymptote
ranges, it is much more difficult to extract this behavior fromwith the above-mentioned amplitude divided BY x] in-

(14)
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deed lies tangential to the crossover curve, confirming our The saturation effects can, just as for the magnetization
data. As the temperature is further decreased, the data fdensity, for large ranges be described with mean-field theory.
systems with small interaction ranges start to follow a lineln a mean-field model the magnetic susceptibility is given by
with a slope between that of the Ising and the mean-field

asymptotes. This effect is caused by the fact that these sys- 1-m
tems have left the critical region. For sufficiently large inter- X= trm? (15
action ranges, however, the curves coincide and have a slope

that gradually decregseiﬂ the absolute s_en}seAIthough the Using Eq.(12) we find for T<T,

crossover curve at first varies more rapidly than for the mag-

netization density, it subsequently only slowly approaches 1 9 18 18 6714

the classical regime and the overall size of the crossover X=_—2t—1—0+ﬁ5 _t)+ﬁs(_t)2+ ﬁ(—t)3

region is again between two and three decades. Remarkably,

the slope of the crossover curve passes eteough the +0((—1)%), (16)
mean-field value-1 before settling at this value for suffi-

ciently low temperatures. In other words, the derivative ofwhich exhibits the classical value for the susceptibility expo-
the connected susceptibility appears to change nonmonotonienty,,-= 1 and the critical amplitudé. Figure 11a) shows
cally from its asymptotic Ising value-7/4 to its classical the asymptote with this amplitude and one can observe that
value — 1. Several explanations may be considered for thishe crossover curve approaches this asymptote tetow
behavior. Either it is an intrinsic effect of the crossover func-aroundtR?= — 1. Also the mean-field curved6) are shown

tion or it might be explained from the fact that is the  for an=140, 500, 1000, 4000, and 10 000 and they accu-
difference betweetm?) and(|m|)?, which each separately rately describe the numerical data. Thus we have used the
are described by a monotonically varying curve. ratio between the series expansid®) and the asymptotic

2
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behavior 1/(2t) to remove the saturation effects in Fig. data. For larger temperatures, the curves gradually approach
11(a). The resulting graph is shown in Fig. (b}, in which  an asymptote with the mean-field slopel. However, some
also the data points in the finite-size regime have been omitzare has to be exercised when interpreting this behavior.
ted in order to obtain a clear crossover curve. The nonmoncAbove T., no saturation of the order parameter occurs and
tonic variation of the slope of this curve is clearly visible. the system smoothly passes over to reg@amncritica) be-

In the disorderedsymmetrig phase, we encounter a dif- havior. In this high-temperature region the susceptibility de-
ferent situation. The susceptibility is now given by creases proportionally to T/ For small interaction ranges it
=L9%m?)/kgT. This is identical to the expression we haveis this behavior that one observes in the graph. Only for
used for the finite-size crossover scaling, except that théarger interaction ranges one actually observes classiital
temperature-dependent factor has been omitted in Sec. Il @al behavior. The latter systems indeed reproduce the mean-
Figure 12 shows the critical finite-size amplitudes of bgth  field critical amplitude, which is equal to [las follows from
and y= Ld(m2> as a function of the interaction range. We Eq. (15 with m=0]. Note that, due to the absence of satu-
have fitted an expression of the for(m) to the data foﬂ?ﬁ1 ration effects, interaction ranges up Iiﬁi:looo are amply
=2. This expression describes the data well, except for theufficient to observe the full crossover region.
data point aﬂ?ﬁsl, where the deviation is approximately
10%. Just as for the connected susceptibility, the finite-range
corrections to the critical amplitude gf are much smaller
than for x. In fact, they are so small that they can be com- In several paperssee, e.g., Refg5,2]) the slopes of
pletely omitted in the thermal crossover scaling, as illustratedhe crossover functions are described by so-called effec-
in Fig. 13. This graph showg'/R? as a function of the tive exponents. These exponents can be defined as
crossover variableR? for various interaction ranges and sys- Beg=dIn(my/dint|=t din(m)/dt and yes=—dlny/din|t|=
tem sizes. Outside the finite-size regime, the data follow the-t diny/dt. In fact, this concept has been familiar from the
Ising asymptote with slope-7/4. The exactly known ampli- analysis of experimental data for a long tifi3], but only a
tude 2arcsinh(1A*, where A*=0.962 B ... [21,22, of limited amount of theoretical work has addressed these is-
this asymptote is accurately reproduced by the numericadues. Of course, these exponents change from their Ising val-

V. EFFECTIVE EXPONENTS
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FIG. 13. Thermal crossover for the suscepti-
. bility x' in the symmetric phase for various
ranges and system sizes. No finite-range correc-
tions have been applied. For a discussion see the
i text.
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ues to the classical values in the crossover region. Howevetion holds in the mean-field regime while the former does not
the precise variation in the crossover region is unclarifieds a direct manifestation of the violation of hyperscaling.
and partially subject to debate. Although these exponents carhus we define[28/(2— a)]er= 3 — dIn({jm))yL)/dIn(L/

be read off from the form of the crossover curves presenteg?) Thjs quantity is shown as a function bfR? in Fig. 14.

in Sec. IV, we consider it worthwhile to present separatéajthough the error bars are considerable, the crossover from
graphs displayin@eir, vefr, andyes, Where the SUperscripts the |sing value 1/&for large values of./R?) to the classical
denote the caseis<0 andt>0, respectively. The additional \jye 1/2(for small values oL/R?) is clearly visible.
advantage of these exponents is that they follow from data Tyming to thermal crossover, we display in Figs. 15, 16,
with the same range and hence are not affected by any rangg- 4 17 the exponent8ey, var, and y;ﬁ, respectively, as

dependent correction factors. defined above. The effective magnetization expongtin-

As the graph in Fig. @) is particularly smooth, it is ) . . .
tempting to consider its derivative as well. As derived in Ref,CT€aS€S monotonically from its Ising value 1/8 to the classi-

[10], (|m]) Lo (L/R?)*"~32, This relation also holds in the cal value 1/2. In particular, the data for different interaction

mean-field regime, provided that one replaces the magnetir(f"m:]es ro_ughly fall onto the same curve, W.h'Ch supports the
exponenty,, by its starred counterpayt: =3d/4=3/2. The hypothesis that the crossover curve is universal. However,
asterisk indicates that the exponent is modified due to th@n€ observes that for systems with relatively small interac-

dangerous-irrelevant-variable mechanism, as explained ifON ranges the effective exponent dows follow this curve.
e.g., Ref.[24]. Thus, while we can rewrite the above- This effect, caused by saturation of the order parameter, can

mentioned relation in the Ising regime in terms of conven-clearly lead to misleading results in experiments. In Fig. 16
tional critical exponents 3<3m|>\/[oc(|_/R2)fﬁ/v+1/2, thisis  the nonmonotonic variation of.; between 7/4 and 1 is
not possible in the mean-field regime sinege is not af- clearly visible. This may be considered as a manifestation of
fected by the dangerous-irrelevant-variable mechanism. Awhat Fisher[5] calls an “underswing.” The occurrence of
an alternative we employ the specific-heat exponant such a nonmonotonic crossover has been predicted by vari-
<|m|>\/Eoc(L/RZ)—Zﬁ/(Z—a)H/Z_ The fact that the latter rela- O0us renormalization calculations for the crossover from Ising
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to XY and Heisenberg critical behaviabove T;; see, e.g., where we have taken the functi@{Iny) from Eq.(19), set
Refs.[25—-27] and references therein. Furthermore, an expoe =2, and adjuste¢h andq such that the curve constituted a
nent y.4+=0.88(3) has been measured in the symmetrigeasonable description of the data. Clearly, no conclusions
phase in micellar solutior{£8]. Fisher{5] has suggested that should be drawn from this curve, especially because(H3).

an effective susceptibility exponent that takes a vajyg  has been proposed for the symmetric phase. In addition, for
<1 in the crossover region might be a general feature ofl=2 the exponent/2 is a very poor approximation for the
crossover from 3D Ising to classical critical behavior andexponentd=—y;/y,=2, which is actually expected to ap-
noted that concrete calculations yielding such an effectivgpear in the functiorE(Iny). As follows from Fig. 17, the
exponent would be valuable. In R¢6], a first-orders ex-  behavior aboverl. is completely different. Here we have

pansion is quoted for the exponent crossover function used expressiofil7) with Eq. (18) to describe the data. Ex-
cept for a shift along the horizontal axfa proportionality
Yeir= 1+ (vi— ymup) ELIN([/G])] , (17 constant in the Ginzburg numbeno adjustable parameter is

, . present and it is surprising how well the data agree with the
whereG is the crossover temperature or Ginzburg numbetneqretical prediction. It would be interesting to calculate the
and amplitude of the first Wegner correction as a functiorRof

However, even with the present techniques this would, for
=1(1+y*?) . ’ , o o
E(iny)=1/(1+y™) (18 the large values dR, require prohibitively large system sizes
In our case,t/G is directly proportional to the crossover (t0 avoid finite-size effecisand thus has not been attempted.
variabletR2. To describe the experimental results from Ref.. SOmetimes experiments have yielded effective exponents

[28], Fisher used an extension of E38) in disagreement with the know&9] universality classes, but
still satisfying the scaling relations, such &g+ 2Be=2
E(Iny)=(1+py*?/[1+(p+1)y*?+qy?]. (19  — . Hereaes denotes the effective exponent of the spe-

cific heat, which in our case is expected to be alwaysse
Even though one may not expect such an expansion to comne) zero, as both the classical and the 2D Ising valua afe
verge ford=2, we have drawn expressidh7) in Fig. 16, equal to zero. This is also confirmed by the close resem-
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1.25 i J describing the logarithmic derivative of the cross-
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blance between Figs. 14 and 15. Thus it is interesting to notduich for access to a Cray-T3E computer, on which part of
that this scaling relation is strongly violated in the presenthe computations have been carried out.

case: From Figs. 15 and 16 we can estimate that

+ 2B reaches a minimum of approximately 1At&RC~ APPENDIX: EXACT CALCULATION

-1 OF SOME FINITE-SIZE EFFECTS

IN A MEAN-FIELD SYSTEM

VI. CONCLUSIONS _ _ _
In Ref. [14] the universal amplitude rati@Q has been

In this paper we have presented numerical results for scakalculated for a system in which all spins interact equally
ing functions describing the crossover from Ising-like tostrongly, including the leading finite-size correction. It was
classical critical behavior in two-dimensional systems. Whileshown that the relevant integrals can be expressed in terms of
the general concepts describing this crossover have been dgquantityl,, which we here generalize to odd powers of the
veloped many years ago, only a limited amount of progresgnagnetization density,
has been made for a long time. In the present paper it is

demonstrated that one can obtain accurate quantitative infor- o ) 1 12\ (VA1 (Kt 1
mation on crossover scaling from computer simulations. Thel k= 7wdm|m| exp — 1—2Nm “\'N §F 2 |
full crossover region was covered for both finite-size cross- (A1)

over and thermal crossover above and beldw A data

collapse has been obtained for all system sizes and interagiereN denotes the number of spins. In a similar fashion we
tion ranges, which supports the hypothesis that these crosgan also calculate other finite-size effects to leading order in
over functions are universal. Deviations from this curve arey, Expanding the terms in the partition function and replac-

present, but can be understood from finite-size and saturatiqg the sum over all possible states by an integral, we find for
effects. The results are in agreement with the previously dege absolute magnetization density

rived renormalization scenario for these systems.

Working in two dimensions offers the advantage that the 1 (=
exponents and the critical amplitudes are known exactly. <|m|>=zf dmlmlexr{
More importantly, critical fluctuations are very large in two o
dimensions, which leads to critical behavior that strongly
differs from classical behavior and hence to a clearly visible +O(Nme,m?%)
crossover between the two universality classes. We have

shown that the magnetization density is described by fh which Z denotes the partition functidrexcept for a pref-

smooth CrOSSOVer Curve. The .effectlve exponent, defined ctor that has been divided out; cf. B8 in Ref. [14]].
the logarithmic derivative of this curve, increases monotoni-,

cally from the Ising value to the classical value in two or Elementary algebra then leads to
three decades in the reduced temperature. On the other hand, .

the effective exponent for the susceptibility has a logarithmic (m[)= 121/4@ i

derivative that varies monotonically above the Curie tem- () NY4

perature and nonmonotonically below it. The occurrence of

nonmonotonic behavior in the symmetric phase has been inghich for d=2 yields expressioi5). Along the same lines
ferred from renormalization-group calculations in three di-gne finds

mensions and found long-standing interest. An extension of

1 1 1
m me m2
12N ) { 1 3ON 2

: (A2)

: (A3)

N3/4

the present study td=3 is therefore highly desirable and reé) 1 1
has been planned for the near future. <m2>= \/1—2_4 —+O(—), (A4)
I N2 N
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